A novel ensemble machine learning for robust microarray data classification
نویسنده
چکیده
Microarray data analysis and classification has demonstrated convincingly that it provides an effective methodology for the effective diagnosis of diseases and cancers. Although much research has been performed on applying machine learning techniques for microarray data classification during the past years, it has been shown that conventional machine learning techniques have intrinsic drawbacks in achieving accurate and robust classifications. This paper presents a novel ensemble machine learning approach for the development of robust microarray data classification. Different from the conventional ensemble learning techniques, the approach presented begins with generating a pool of candidate base classifiers based on the gene sub-sampling and then the selection of a sub-set of appropriate base classifiers to construct the classification committee based on classifier clustering. Experimental results have demonstrated that the classifiers constructed by the proposed method outperforms not only the classifiers generated by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods (bagging and boosting).
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملA Robust Model for Gene Anlysis and Classification
The development of microarray gene technology has provided a large volume of data to many fields. Microarray data analysis and classification has demonstrated an effective methodology for the effective diagnosis of diseases and cancers. Although much research has been performed on applying machine learning techniques for microarray data classification during the past years, it has been shown th...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملA Robust Ensemble Classification Method for Microarray Data Analysis
Apart from the dimensionality problem, the uncertainty of Microarray data quality is another major challenge of Microarray classification. Microarray data contains various levels of noise and quite often are high levels of noise, and these data lead to unreliable and low accuracy analysis as well as the high dimensionality problem. In this paper, we propose a new Microarray data classification ...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in biology and medicine
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2006